当前的 WPF 的源代码完全开放,本文将从最底层的 WPF 代码告诉大家为什么设置了 AllowsTransparency 之后性能会变差,以及 WPF 透明的原理
特别感谢 少珺 的研究,我只是将他告诉我的内容写出来,告诉大家
本文将会告诉大家 AllowsTransparency 设置为 true 之后,为什么整体渲染性能降低,将会占用更多 CPU 资源。以及在 4k 下使用更多内存的原因
本文代码基于 WPF 官方开源仓库 所了解,部分逻辑也许和 .NET Framework 不同版本有出入
在 WPF 的实现窗口透明逻辑中,可以在窗口设置 AllowsTransparency = true
让窗口设置透明笔刷的时候,可以看到窗口后面的内容。这个特性由 Windows 的底层 UpdateLayeredWindow 提供或 UpdateLayeredWindowIndirect 提供
在 WPF 的窗口渲染底层的 WPF_GFX 库里面的入口是在 d3ddevice.cpp 的 Present 方法,方法签名如下
HRESULT
CD3DDeviceLevel1::Present(
__in_ecount(1) CD3DSwapChain const *pD3DSwapChain,
__in_ecount_opt(1) CMILSurfaceRect const *prcSource,
__in_ecount_opt(1) CMILSurfaceRect const *prcDest,
__in_ecount(1) CMILDeviceContext const *pMILDC,
__in_ecount_opt(1) RGNDATA const * pDirtyRegion,
DWORD dwD3DPresentFlags
)
在这个方法里面的核心逻辑是通过 pMILDC->PresentWithHAL()
决定是否走 PresentWithD3D 还是走 PresentWithGDI 方法,如下面代码
if (pMILDC->PresentWithHAL())
{
PresentWithD3D(
pD3DSwapChain->m_pD3DSwapChain,
prcSource,
prcDest,
pMILDC,
pDirtyRegion,
dwD3DPresentFlags,
&fPresentProcessed
);
}
else
{
PresentWithGDI(
pD3DSwapChain,
prcSource,
prcDest,
pMILDC,
pDirtyRegion,
&fPresentProcessed
);
}
上面代码中的核心逻辑就是通过 PresentWithD3D 使用 D3D 的方法,或通过 PresentWithGDI 使用 GDI 的方法。有趣的是根据静态代码分析工具人 少珺 的研究,基本都是进入了 PresentWithGDI 方法,也就是实际上进行的是 GDI 渲染。以下代码是 PresentWithGDI 方法签名
HRESULT
CD3DDeviceLevel1::PresentWithGDI(
__in_ecount(1) CD3DSwapChain const *pD3DSwapChain,
__in_ecount_opt(1) CMILSurfaceRect const * prcSource,
__in_ecount_opt(1) CMILSurfaceRect const * prcDest,
__in_ecount(1) CMILDeviceContext const * pMILDC,
__in_ecount_opt(1) RGNDATA const * pDirtyRegion,
__out_ecount(1) bool *pfPresentProcessed
)
在这个函数里面的核心逻辑如下
HDC hdcBackBuffer = NULL;
CD3DSurface *pBackBufferSurface = NULL;
UINT uBufferWidth;
UINT uBufferHeight;
CMilRectU rcSource;
IFC(pD3DSwapChain->GetBackBuffer(
0,
&pBackBufferSurface
));
pBackBufferSurface->GetSurfaceSize(
&uBufferWidth,
&uBufferHeight
);
// 忽略代码,计算 rcSource 的值
IFC(pD3DSwapChain->GetDC(
0,
rcSource,
OUT &hdcBackBuffer
));
if ((pMILDC->GetRTInitializationFlags() & MilRTInitialization::PresentUsingMask) == MilRTInitialization::PresentUsingUpdateLayeredWindow)
{
SIZE sz = { uBufferWidth, uBufferHeight };
POINT ptSrc = { 0, 0 };
HWND hWnd = pMILDC->GetHWND();
hr = UpdateLayeredWindowEx(
hWnd,
NULL, // front buffer
&pMILDC->GetPosition(),
&sz,
hdcBackBuffer,
&ptSrc,
pMILDC->GetColorKey(), // colorkey
&pMILDC->GetBlendFunction(), // blendfunction
pMILDC->GetULWFlags(), // flags
prcSource
);
}
以上代码中的 IFC 只是一个宏而已,还请忽略。通过上面代码,就可以了解到为什么占用内存比较多的一个原因,那就是在内存中重新开辟了一段内存,内存的大小就是窗口的大小。因此可以回答本文的为什么在 4k 下将会占用更多的内存的问题,其实是需要在 4k 下进行全屏的窗口才会占用很多内存,因为在如上代码里面重新申请了一段内存,这个内存大小和窗口大小是关联的
在上面代码中申请的内存的用途是用来从 D3D 拷贝出来,用于后续做 GDI 渲染使用。实际的拷贝逻辑放在 pD3DSwapChain->GetDC
方法里面,通过这个方法获取了 hdcBackBuffer 对象。而这个方法的核心逻辑是放在 d3dswapchainwithswdc.cpp 类里面,代码大概如下
// Gets a DC that refers to a system memory bitmap.
//
// The system memory bitmap is updated during this call. The dirty rect is
// used to determine how much of it needs updating.
//
HRESULT
CD3DSwapChainWithSwDC::GetDC(
/*__in_range(<, this->m_cBackBuffers)*/ UINT iBackBuffer,
__in_ecount(1) const CMilRectU& rcDirty,
__deref_out HDC *phdcBackBuffer
) const
{
HRESULT hr = S_OK;
ENTER_USE_CONTEXT_FOR_SCOPE(Device());
Assert(iBackBuffer < m_cBackBuffers);
D3DSURFACE_DESC const &surfDesc = m_rgBackBuffers[iBackBuffer]->Desc();
UINT cbBufferInset =
m_stride * rcDirty.top
+ D3DFormatSize(surfDesc.Format) * rcDirty.left;
BYTE *pbBuffer = reinterpret_cast<BYTE*>(m_pBuffer) + cbBufferInset;
IFC(m_rgBackBuffers[iBackBuffer]->ReadIntoSysMemBuffer(
rcDirty,
0,
NULL,
D3DFormatToPixelFormat(surfDesc.Format, TRUE),
m_stride,
DBG_ANALYSIS_PARAM_COMMA(m_cbBuffer - cbBufferInset)
pbBuffer
));
*phdcBackBuffer = m_hdcCopiedBackBuffer;
Cleanup:
RRETURN(hr);
}
上面代码的核心逻辑是 ReadIntoSysMemBuffer 方法,从这里进行了内存的拷贝。这里也就能回答大家为什么会使用更多的 CPU 的原因了,此时存在了显存(这个说法不一定对)到内存的拷贝,进行一次 4k 的大图拷贝的效率还是很低的。当然了,对于没有显存的设备来说,依然也是需要 CPU 到 CPU 的拷贝
好在 WPF 还是加了一点优化的,只是拷贝 rcDirty 范围而已,这个变量的命名意思是 rect (rc) 矩形的 Dirty 需要重绘的范围
回到 CD3DDeviceLevel1::PresentWithGDI
方法,在拿到 hdcBackBuffer 之后,此时就可以使用 hdcBackBuffer 进行 GDI 渲染了。调用的核心方法是 UpdateLayeredWindowEx 方法。这里的 UpdateLayeredWindowEx 是放在 oscompat.cpp 文件里,这个代码是为了做系统兼容使用的,本质就是将会通过系统判断,调用 UpdateLayeredWindow 或 UpdateLayeredWindowIndirect 方法,如下面代码
//+----------------------------------------------------------------------------
//
// Function: UpdateLayeredWindowEx
//
// Synopsis: Call UpdateLayeredWindow or UpdateLayeredWindowIndirect as
// required by parameters. If UpdateLayeredWindowIndirect is
// needed (ULW_EX_NORESIZE requested), but not available return
// HRESULT_FROM_WIN32(ERROR_PROC_NOT_FOUND). prcDirty is ignored
// when UpdateLayeredWindowIndirect is not available.
//
//-----------------------------------------------------------------------------
HRESULT
UpdateLayeredWindowEx(
__in HWND hWnd,
__in_opt HDC hdcDst,
__in_ecount_opt(1) CONST POINT *pptDst,
__in_ecount_opt(1) CONST SIZE *psize,
__in_opt HDC hdcSrc,
__in_ecount_opt(1) CONST POINT *pptSrc,
COLORREF crKey,
__in_ecount_opt(1)CONST BLENDFUNCTION *pblend,
DWORD dwFlags,
__in_ecount_opt(1) CONST RECT *prcDirty
)
而在 Windows 提供的 UpdateLayeredWindow 或 UpdateLayeredWindowIndirect 方法将会支持传入 GDI 的绘图空间,根据给定的颜色设置透明。详细使用方法请看 分层窗口UpdateLayeredWindowIndirect局部更新
也就是说整个 WPF 的 AllowsTransparency 设置透明的一个最底层核心逻辑就是调用 UpdateLayeredWindow 或 UpdateLayeredWindowIndirect 方法实现
在调用过程中需要从 DX 将窗口渲染内容拷贝出来放在内存,然后使用 GDI 进行渲染。在拷贝内存过程中需要重新申请一段内存空间,将会在窗口比较大的时候占用更多的内存,同时拷贝需要使用更多的 CPU 计算。而通过 GDI 的再次渲染将会降低整个应用的渲染性能
说到这里,是否有方法可以提升性能?其实有的,详细请看 WPF 制作高性能的透明背景异形窗口
当前的 WPF 在 https://github.com/dotnet/wpf 完全开源,使用友好的 MIT 协议,意味着允许任何人任何组织和企业任意处置,包括使用,复制,修改,合并,发表,分发,再授权,或者销售。在仓库里面包含了完全的构建逻辑,只需要本地的网络足够好(因为需要下载一堆构建工具),即可进行本地构建
本文会经常更新,请阅读原文: https://dotnet-campus.github.io//post/WPF-%E4%BB%8E%E6%9C%80%E5%BA%95%E5%B1%82%E6%BA%90%E4%BB%A3%E7%A0%81%E4%BA%86%E8%A7%A3-AllowsTransparency-%E6%80%A7%E8%83%BD%E5%B7%AE%E7%9A%84%E5%8E%9F%E5%9B%A0.html ,以避免陈旧错误知识的误导,同时有更好的阅读体验。
本作品采用 知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议 进行许可。欢迎转载、使用、重新发布,但务必保留文章署名 lindexi (包含链接: https://dotnet-campus.github.io/ ),不得用于商业目的,基于本文修改后的作品务必以相同的许可发布。如有任何疑问,请 与我联系 。